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1. Introduction 
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AND 

STANFORD UNIVERSITY 

Assume two parallel line segments of indefinite length, one of which is fixed 
and the other of which is movable, moving in a linear direction, parallel to the 
fixed line. Along the fixed line there are special points equally spaced which we 
shall denote as positions. Similarly, on the moving line, there exist equally spaced 
points which we denote as sites. A site may be in either of two states which we 
refer to as vacant or filled. After a site's initial state, which is determined, it can 
change states only after interactions with the positions along the fixed line in the 
following manner. A site which is vacant can become filled at certain positions. 
Call these "load" positions. Similarly, a site which is filled can become vacant 
at the remaining positions. We denote these as "release" positions. We assume 
an arbitrary fixed starting position on the fixed line with the positions numbered 
consecutively beyond the starting position and, further, the release and load 
positions alternate so that the odd numbered positions are release positions and 
the even numbered ones are load positions. Then, under certain assumptions 
stated in the next section, the question posed is the probability a site will be filled 
(or vacant) after a transit of n positions. The model will then be extended to the 
case where a site can be in any one of (m + 1) states and the analogous question 
posed is the probability the site will be empty, filled or in any arbitrary state j 
after a transit of n positions. 

The model given above is related to the following theory concerning the mech
anism of muscular contraction as discussed by Podolsky [1]. A muscle fibril, as 
seen under the electron microscope, consists of alternating thick and thin fila
ments. It is assumed that sites exist along the two kinds of filaments at which 
certain chemical interactions occur at the molecular level. The sites on the thin 
filaments are capable of binding certain molecules and when a site containing 
the molecule approaches a site on the thick filament an interaction (splitting 
off of the molecule) may or may not take place. 

Observations on the living muscle suggest that during shortening there is 
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relative motion of the two filaments. In our model, we have introduced an ideal
ization by assuming that only the thin filament moves (the moving line) and 
that the thick filament is rigid (the fixed line). Further, Podolsky assumes that 
the positions on the thick filament are only release positions and that the site 
on the thin filament picks up (becomes filled) a molecule from the medium 
between the two filaments at any point between two positions. For simplicity, 
we have placed this binding action at a fixed point between two positions and 
also call this point a position. 

2. Assumptions and notation 

Letting "event" refer to either the occurrence or nonoccurrence of an inter
action, we make the following assumptions with regard to the process: 

(a) an event between a site and a position is independent of any previous 
events involving that site and position, 

(b) only one event can occur between a specific site and a specific position, 
(c) the moving line moves with uniform velocity past the fixed line, 
( d) a filled site becomes vacant at a release position with a constant probability 

which is the same for all release positions; similarly, a vacant site becomes filled 
at a load position with a constant probability which is the same for all 
load positions. 

Assumptions (c) and (d) deviate from the real situation in the muscular con
traction problem in that during shortening a site on the thin filament moves with 
a varying velocity. The probability of an interaction between a site and a position 
will clearly be greatly affected by the speed with which a site moves past a 
position: the slower the speed the greater the probability of an interaction. Hence, 
a solution based on assumption (d) can only be a first approximation to the 
question posed in the muscle problem. A more realistic assumption would postu
late the probability of an interaction between site n.nd position as a function of 
speed or time. 

We let S represent the state of a site, So being the state of the site when it is 
vacant and S1 when it is filled. If 

(1) (Si~ S;)ln, i,j = 0, 1; n = 1, 2, · · ·, (2r - 1), 2r, · · · 

represents the transition of a site from state i t.o j at the nth position and recalling 
that an odd position is a release position and an even position is a load position 
we let 

(2) 

a = P{(S1 ~ So)l2r - 1}, 

0 = P{(So ~ S1)l2r - 1}, 

{3 = P{(So ~ S1)!2r}, 

0 = P{(S1 ~ So)l2r}, 

Pn = P{(S = S1)ln}, 

1 - a = P{(S1 ~ S1)!2r - 1}, 

1 = P{(So ~ So)l2r - 1}, 

1 - {3 = P{(So ~ So)l2r}, 

1 = P{(S1 ~ S1)12r}, 

1 - Pn = P{(S = So)ln}. 
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We seek a solution for P n, the probability the site will be filled at the end of 
the nth position. 

3. Solution through difference equations 

The branching process can be illustrated as shown in figure 1. 

(2r - l)st Position 2rth Position 
(Release) (Load) 

FIGURE 1 

We write at once the two joint difference equations 

(3) 

(4) 

P2., = P2r-l + P(l - P2.,-1) = p + (1 - P)P2r-l 

P2.,-1 = (1 - a)P2.,-2 

from which we obtain the following second order difference equations 

(5) 

(6) 

P2., = P + (1 - a)(l - P)P2.,-2 

P2.,-1 = P(l - a) + (1 - a) (1 - P)P2.,_3, 

The standard solution of (5) and (6) gives respectively 

(7) 
_ _ _ ., 1 - [(1 - a)(l - P)]" 

P2., - [(1 a)(l P)] Po+ p 1 _ (l _ a)(l _ P) , 

r = 1, 2, · · · 
and 

(8) 
- _ _ r-1 _ 1 - [(1 - a)(l - P)Jr-l 

P 2.,_1 - [(1 a)(l 13)] P1+13(1 a) l _ (1 _ a)(l _ 13) 

= (1 - a)[(l - a)(l -P)]"-1Po+l3(1-a) l ~ ~(~l--a~~~l-!~;
1

' 
r = 1, 2, · · ·. 

Thus, if the site starts in state 81, the boundary condition is Po = 1 and 

(9) 

or 

Pn = [(1 - a)(l - 13)]n/2 + {j 1 - [(1 - a)(l - p)]n/2' 
1 - (1 - a) (1 - 13) 

n = 0, 2, 4, · · · 



260 FOURTH BERKELEY SYMPOSIUM: GREENHOUSE 

(10) P n = (1 - a)[ (1 - a) (1 - /1) J (n-1)/2 

_ 1 - [(1 - a)(l - /j)] (n-1)/2 _ + /j(l a) 1 _ (l _ a)(l _ /j) 'n - 1, 3, 5, 

If the site starts in state So, so that Po = 0, we have 

(11) 
1 - [(1 - a)(l - /j)]n/2 

Pn = /j ' 1 - (1 - a)(l - /j) 
n = 0, 2, 4, · · · 

or 

(12) 
_ _ 1 - [(1 - a)(l - /j)] (n-l)/2 

Pn - /j(l a) l _ (l _ a)(l _ /1) ' n = 1, 3, 5, · · ·. 

4. Solution through transition matrices 

It is of interest to obtain the solution to this problem involving only dichoto
mous states of a site using transition matrices. This method can be employed 
to solve the more general problem. 

From the branching process given previously, we obtain the matrix of transi
tion probabilities for the state of a site as it passes an odd position to be shown 
in table I, and the transition matrix as the site passes an even position shown 
in table II. 

State before 
(2r - l)st position 

State before 
2rth position 

TABLE I 

State after (2r - l)st position 
So Si 

1 
a 

TABLE II 

0 
1-a 

State after 2rth position 
So Si 

1 - fJ 
0 

fJ 
1 

Denote the transpose of the above matrices by A and B respectively, that is, 

(13) A_ (1 a ) 
- 0 1 - a 

and 

(14) 

Let Pi.n = P { (S = Si) In}, with j = 0, 1 and P~n> = (po,n, P1.n), a row vector of 
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probabilities of the two possible states of a site at the end of the nth position. 
Then 

(15) 

Hence for n even, 

(16) 

Since 

(17) 

we have 

(18) 

P e2r) = B P e2r-l) 

P e2r-l) = AP e2r-2), 

Pen> = BAPen-2> = (BA)n'2Peo>· 

BA = (1 - f3 a(l - f3) )' 
f3 1 - a(l - f3) 

(
Po.n) = (1 - f3 a(l - /3) )n/2 (Po.o) 
P1,n f3 1 - a(l - /3) P1.o 

r = 1, 2, · · ·. 

n = 0, 2, 4, · · ·, 

where Po.o and P1.o are the initial conditions of the process. If the site starts 
filled, Po.o = 0 and P1.o = 1; if it starts empty Po.o = 1 and P1.o = 0. 

For n odd, we get 

(19) Pen) = AB Pen-2) = (AB) <n-l)/2Pei) 

which yields 

(20) (Po,n) = (1 - /3(1 - a) a ) (n-0/
2(p0,1) 

P1.n /3(1- a) 1 - a pl,l 

n = 1, 3, 5, · · ·, 

where Po.1 = a and P1.1 = 1 - a if the site starts filled, and Po.1 = 1, P1.1 = 0 
if the site starts empty. 

5. Generalization 

We extend the problem to the case where each site can be in any one of m + 1 
states S 0, S1, • • • , Sm. When a site in state Si, with i = O, 1, · · · , m on the 
moving line encounters an odd (release) position on the fixed line segment, any 
number i - j, where j = O, 1, · · · , i, of interactions can occur resulting in the 
site changing from state Si to s,. Similarly, when a site in state Si with i = 0, 
1, ... 'm encounters an even (load) position on the fixed line segment, any 
number j - i, where j = i, i + 1, · · · , m, of interactions can occur resulting 
in the site changing from state Si to S,. It is assumed that the number of inter
actions occurring at the juxtaposition of a site and a position has a binomial 
distribution with parameter a at a release position and parameter f3 at a load 
position. 

We now let 

(21) Pi,n = P{(S = Si)ln}, i = 0, 1, · · ·, m, 
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and 

{22) P (n) = (po,n, P1,n, • • • , Pm,n)' 

be an (m + 1) X 1 column vector. In general, we desire to determine any com
ponent of P <n> although there may be some particular interest associated with 
Po.n or Pm,n, the probabilities the site is empty or filled, respectively, as the site 
has moved past n positions. 

Since we assume the number of interactions is a binomial variate, we may then 
write for the transition probability at an odd position 

{23) P{(S, ~ S;)j2r - 1} = {(i ~ j)aH(l - a)'= bi,i-;(a), j ~ i, 
~ j>~ 

i = 0, 1, · · · , m;j = 0, 1, · · · , i 
and for the transition probability at an even position, 

(24) P{(S, ~ S;) j2r} = {( J =· npH(l - p)m-i = b,_1,;-i(P), 
0, 

j ~ i, 

j < i, 
i = 0, 1, · · · , m; j = i, i + 1, · · · , m. 

Then the transition matrix at an odd position is as shown in table III, 

TABLE III 

So 

So 1 0 0 0 

s, 0 

where :E,.0b,,,_1(a) = 1. Denote this matrix by A', the prime representing the 
transpose. 

The transition matrix at an even position is as shown in table IV, 
where :ET-cbm-cJ-c<P) = 1. Denote this matrix by B'. 

We then have 

(25) 

and 

(26) 

so that 

(27) 

P (2r) = B P (2r-1) 

P (2r-1) = A P (2r-2) 

Pc2r> = BA Pc2r-2> = (BA)2Pc2r--4> == (BA) <2r>t2Pco>· 
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TABLE IV 

So s. 
So 

0 0 0 1 

Similarly, 

(28) Pc2r-1> = AB Pc2r-a> = (AB)2Pc2r-0> = (AB) <2r-1>12Pc1> =(AB) <2r-l)A Pco>· 

Therefore, 

(29) 

and 

p (n) = (BA)n12p (0), n = 0, 2, 4, · · ·, 

(30) Pen> = (AB) <n-t>t2A Pcoh n = 1, 3, 5, · · · . 

Pco> is the vector whose components {pi,o}, with i = 0, 1, · · · , m, represent the 
initial conditions. Of interest, are the cases where Pm.o = 1, Pi.o = 0, i ~ m, or 
where Po.o = 1, Pi.o = 0, i ~ 0. The former case holds when the site starts in 
state Sm, that is, it is filled, the latter case represents the situation where the 
site starts in state So, that is, it is empty. 

6. Estimation of parameters in the simple case 

If a and fj are known then clearly the probability that a site will be either 
empty or filled at any position n is immediately determined by equations 
(9)-(12) or (16) and (19) in the special case. Likewise the probability that a 
site is in any state So to Sm is determined by (29) and (30) in the general case. 
If a fixed number of sites in known starting states are observed at the end of a 
transit past n positions, then the set of proportions, {p,,n}, where i = 0, 1, · · · , 
m, of sites observed to be in state i are random variables having a joint multi
nomial distribution or a binomial distribution when .,, = 1. The statistical 
problems might then be in testing the binomial model. 

Of greater interest is the case where a and fj are unknown. We consider the 
problem of estimating a and fj only in the special case where the possible states 
of the site are dichotomous so that we have solutions in closed form as given 
by equations (9) to (12). We illustrate the procedure by employing equation (9), 
similar techniques being applicable to the other forms. 

In (9), let 8 == (1 - a) (1 - fj) to obtain 

(31) 
1 - 9n/2 

p n = 9n/2 + {j 1 - 8 ' n = 0, 2, 4, · · · ; 0 < 8 < 1. 
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Now limn-+coi P n = {3 / (1 - 8). Let N be large enough so that we may write to 
a given degree of accuracy 

(32) 

Then 

(33) 

yielding 

(34) 

and hence 

(35) 

PN = _f3_, 
1 - 8 

8= . [
Pn - PN]2/n 
1-PN 

Let u and v be two independent estimates of Pn and PN respectively. Then an 
estimate of 8 is 

(36) 8= -- . A [u - v]2tn 
1 - v 

From (32), and the definition of 8, we get 

(37) ~ = (1 - o)v 

and 

(38) 
0 

& = 1---.... · 
1 - {3 

If n = 2, that is, u is observed at the second position on the fixed line, these 
estimates become 

(39) 

(40) 

(41) 

O=u-v 
1 -v 

.... 1 - u 
13=1-vv 

& = (1 - u)(l - v). 
1-2v+uv 

The observables u and v can be obtained in the following manner. Consider 
starting with m sites all in state 81, since we are using (9) which is obtained with 
this initial condition. Then if the states of each site are noted at a selected nth 
position, u is the proportion of sites observed to be in state 81. Repeat this with 
another set of sites and now if the state of each of these sites are noted at a large 
distance along the fixed line from the starting position so that N is large enough 
for the approximation (32) to take hold, v will be the proportion of sites in 81 
at the Nth position. Thus u and v are independent, binomial variables with 
expectations Pn and PN and variances Pn(l - Pn)/m(n) and PN(l - PN)/m(N) 
respectively. 
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If the number of sites involved in the experiments, m(n) and m(N), are large, 
then we may obtain an estimate of the variance of 0 by the usual Taylor series 
approximation. This gives 

(42) f(A) 4 [ A2 (1 - u)2 A2] 
8 = n20(n-2)(1 - v)2 Uu + (1 - v)2 u,, • 

The estimates of variance of a and ~ are more difficult to obtain for general 
values of n because of the covariance between v and 0 and between ~ and 0. 
However, for n = 2, the estimates a and~ are functions only of u and v, and 
estimates of their variances are 

(43) A2 _ 1 [ 2 2 (1 - u) 2 2] 
u~ - (1 - v)2 v 8u + (1 - v)2 8,, 

and 

(44) 

7. Concluding remarks 

The previous discussion was based on two major assumptions: (a) the probft
bilities of the two kind of interactions, a and {j, were constant over all positions, 
and (b) the transition probabilities were binomial. We could relax both conditions 
and with little change in the development obtain a solution of Pen>· 

Let 

45) P{(Si-+ S;)l2r - 1} = Pi;[a(2r - 1)], 

i ~ j, i = 0, 1, · · · , m; j = 0, 1, · · · , i, where a, the probability of a release 
interaction, is now a function of the position number along the fixed line, and p 
is some discrete probability function whose parameter is a{2r - 1). Also denote 
the transition matrix whose elements are the transition probabilities just defined 
by Ac2r-l)· Similarly, we let 

(46) P{(Si-+ S;)l2r} = qi;[{j(2r)], 

i ~ j, i = 0, 1, · · · , m, j = i, i + 1, · · · , m, where {j, the probability of a load 
interaction, also depends upon the position number, and q is a discrete probability 
function with parameter [j(2r), not necessarily of the same type as p. Denote 
the transition matrix at an even site by B2r· Then we have, for example, for n 
even, the very general solution 

(47) Pen> = Bcn)A(n-1)B(n-2)A(n-3) · · · Bc2)A(l)P(o)· 

Now with a and {j functions of n, we may approximate the muscle problem more 
closely since in effect a and (3 can be taken as velocity functions. 
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